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Abstract

Turbulence refers to the endogenous reallocation of resources (such as
jobs) across �rms due to entry, exit, and churning (movements within the
�rm-size distribution). The paper develops a model of turbulent endoge-
nous growth in which �rms invest in in-house innovation to cut costs and
gain market share. As �rms grow, the marginal return to market share de-
clines due to downward-sloping demand, weakening the incentive to innovate.
This mechanism, combined with idiosyncratic shocks, generates endogenous
churning while preserving a stationary �rm-size distribution. The results
are robust to introducing entry and exit, which amplify churning and a�ect
growth through selection. In a counterfactual exercise, I model the observed
decline in high-growth startups as a thinning of the right tail of the R&D
productivity distribution. While eliminating skewness can generate large re-
ductions in aggregate outcomes, matching its decline explains only 15% of
the post-2000 slowdown, suggesting a limited aggregate role for fast-growing
startups.
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1. Introduction

Aggregate productivity growth is central to improving living standards
and a core focus of modern growth theory. A large theoretical and empirical
literature emphasizes �rm-level R&D as the primary driver of productivity
growth, linking innovation to �rm growth and entry, and its absence to �rm
exit. As a result, aggregate productivity growth is inherently a turbulent

process, intrinsically connected to business dynamism.1

In this context, the observed decline in U.S. rates of entry, exit, and churn-
ing � mirrored in other high-income economies � has raised concerns that
the same causes behind this decline could explain the productivity growth
slowdown, which occurred around the same time.2 However, studying aggre-
gate productivity growth and turbulence jointly poses a theoretical challenge:
while constant returns to knowledge are needed for growth, they can imply
a counterfactual tendency to monopoly. A proper investigation of the phe-
nomenon would have to carefully characterize the process that delivers a
stationary �rm-size distribution.

This paper develops a rich yet parsimonious framework to study the rela-
tionship between turbulence and growth when �rms di�er in their ability to
innovate. The model features a stationary �rm-size distribution with endoge-
nous churning. Stationarity arises because more innovative �rms grow faster
when small, but as they expand their market share, the return to further
innovation declines. This mechanism de�nes a no-churning locus : combina-
tions of �rm size and innovation ability at which �rms grow at the aggregate
rate and maintain their relative position. Firms away from the locus adjust
their R&D and market share as they converge to it, generating churning in
the process. Because R&D also drives long-run growth, the framework links
turbulence directly to aggregate productivity growth. This structure high-
lights the central role of �rms that operate far from the no-churning locus in

1Turbulence refers to changes in �rm demographics through entry, exit, and churning
� the reshu�ing of �rms' market shares as they grow or shrink. Brown et al. (2008, p. 3)
de�ne it as �the entire process of economic change: worker reallocation as workers change
jobs and job reallocation from �rms contracting and shutting down, to �rms expanding
and starting up.�

2See Naudé (2022) for an example of how economists think of these two phenomena as
connected, and for a review of the existing explanations for the observed trends.
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driving both turbulence and growth.
Which �rms are most responsible for turbulence? Those hit by large

shocks that displace them from the no-churning combination of size and
innovation ability, and entrants that begin far from it. The latter includes
highly innovative small startups, whose disappearance in the U.S. has been
well documented (Decker et al., 2016b). I embed the disappearance of high-
growth startups into this framework to assess quantitatively the connection
between turbulence and growth, modeling it as a thinning of the right tail
of entrants' innovation ability. Because these �rms start small but grow
quickly, they operate far from the no-churning locus and disproportionately
contribute to both turbulence and aggregate growth as they scale.

The theoretical mechanism rests on three standard assumptions: (i) in-
house R&D; (ii) �rm-speci�c idiosyncratic shocks � in this case to the R&D
productivity � drawn from a common distribution, which drive heterogene-
ity in knowledge stocks and market shares; and (iii) imperfect substitutabil-
ity between goods, which leads to diminishing returns to relative knowledge.
The incentive to innovate arises from the potential to gain market share. Yet
this same force gives rise to �rm-level diminishing returns: as �rms expand
output, they must reduce prices, lowering the return to further market share
gains. As a result, all else equal, the incentive to innovate declines with prod-
uct market share, generating a negative relationship between growth and �rm
size.3

Do �rm-level economic diminishing returns imply that aggregate produc-
tivity growth will eventually decline to zero? No. Because these diminishing
returns apply in relative terms, it is still possible to sustain increasing returns
in absolute terms. The key condition for endogenous growth is that returns
to innovation are constant on average � that is, the distribution of returns
is stationary. Under this condition, R&D investment and �rm growth rates
remain constant on average, yielding a constant aggregate growth rate. Di-
minishing returns at the �rm level imply a stationary distribution of market
shares, which supports a stationary distribution of innovation returns and,
in turn, a stationary and ergodic distribution of �rm growth rates. As in
other fully endogenous growth models, aggregate growth depends on �rms'

3Although the paper focuses on the product line � as the relevant unit for aggre-
gate productivity growth � I use the term �rm synonymously throughout, since each
�rm produces a single product. Similarly, entry refers to horizontal innovation, i.e., the
introduction of a new product.

3



optimal R&D decisions.
Allowing for endogenous, simultaneous entry and exit does not disturb

this process but adds several appealing features. First, it improves realism,
re�ecting the high turnover observed in most industries. Second, it introduces
selection e�ects that shape �rms' life cycles. Third, it a�ects the aggregate
growth rate through its impact on the average R&D productivity in the
economy. Finally, it in�uences churning, as entrants typically begin far from
the no-churning locus.

In a quantitative exercise, I model the post-2000 disappearance of high-
growth startups as a thinning of the right tail of entrants' innovation ability.
At the magnitude observed in the data, and despite the prominent role of
these �rms in the model, this mechanism accounts for roughly 15% of the
decline in productivity growth and for a comparable share of the decline
in entry and job reallocation among incumbents. Motivated by this �nd-
ing, I then consider a broader decline in innovative abilities a�ecting both
incumbents and entrants, calibrated to match the observed slowdown in pro-
ductivity growth, and show that this mechanism can account for a much
larger fraction of the observed decline in turbulence.

Literature Review. This paper builds on the �rm dynamics and en-
dogenous growth literatures � particularly Hopenhayn (1992) and Peretto
and Connolly (2007). Central to this framework is the concept of a no-
churning locus: an endogenous combination of �rm size and ability to inno-
vate at which �rms' productivity grows at the aggregate rate. Firms dynam-
ically converge toward it, and their deviation from it drives churning and
growth heterogeneity.

As in Hopenhayn (1992), the model delivers endogenous entry, exit, and
�rm dynamics driven by idiosyncratic shocks to which �rms respond by ad-
justing their size. In contrast to Hopenhayn, where shocks directly a�ect
�rm productivity, productivity di�erences in my model arise endogenously
from �rms' R&D investment. This distinction allows aggregate productivity
growth to be determined endogenously and jointly with �rm dynamics. The
framework proposed by Hopenhayn is the foundation of the �rm dynam-
ics literature reviewed in Hopenhayn (2014) and in Restuccia and Rogerson
(2017), which has recently devoted much attention to resource allocation and
the aggregate productivity level. My paper provides a natural extension to
this class of models by adding the growth component in a framework that
is otherwise the same. In this way, I contribute to the goal that Restuccia
and Rogerson (2017, p. 168) identify when discussing future directions for
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research. They assert: �From a modeling point of view, the key issue is to
extend the simple static model of heterogeneous producers [...] to a dynamic
setting that includes endogenous decisions that in�uence future productiv-
ity�, to �go beyond static e�ects of misallocation, and focus on the potentially
much larger dynamic e�ects.�

The model is also closely related to the industrial organization�based
growth framework of Peretto and Connolly (2007), building on Peretto (1999).
As in that tradition, it features both vertical innovation � cost reduction in
the production of existing goods � and horizontal innovation� the introduc-
tion of new products � where vertical innovation drives long-run growth and
horizontal innovation determines the equilibrium number of varieties and the
intensity of product-level competition. This paper extends the Peretto frame-
work by introducing �rm-speci�c R&D productivity shocks, which generate
endogenous churning, simultaneous entry and exit, and a non-degenerate
�rm size distribution. Embedding these features in a Peretto-style environ-
ment is particularly valuable given the framework's established usefulness for
addressing industrial organization questions within a growth context, and al-
lows the model to speak directly to turbulence alongside growth.

Endogenous growth models with heterogeneous producers are not new;
their intellectual foundations lie in industrial organization, notably Ericson
and Pakes (1995). Closely related contributions include Thompson (2001)
and Laincz (2009), which study growth under heterogeneous �rms and dy-
namic product-level competition. Relative to this paper, Thompson (2001)
abstracts from economic diminishing returns to endogenous productivity by
assuming that R&D incentives are independent of �rm size. In contrast, in
my model the dependence of R&D incentives on �rm size is a central driver
of turbulence, generating a feedback from the �rm-size distribution to in-
novation decisions and aggregate growth. Laincz (2009) instead features a
tendency toward monopoly counteracted by technological di�usion from the
leader to entrants, whereas my model delivers a non-degenerate �rm-size dis-
tribution through product di�erentiation. The two frameworks are therefore
complementary and describe distinct market environments.

Much of the recent literature on �rm dynamics and growth builds on the
Klette and Kortum (2004) framework but typically relies on speci�c assump-
tions about entry and exit to ensure a stationary �rm size distribution.4 In

4Relevant works include Luttmer (2007), Lentz and Mortensen (2008, 2016), Acemoglu
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contrast, this paper derives stationarity from �rms' endogenous R&D deci-
sions, through a no-churning locus that acts as an attractor in the state space
de�ned by �rm size and innovation ability. This mechanism � grounded in
standard industrial organization principles � links turbulence and growth
directly through the �rm's optimization problem.

The quantitative exercise of this paper is related to Olmstead-Rumsey
(2020), which studies the link between declining growth and rising concentra-
tion by reducing the innovation advantage of laggard �rms. The two papers
di�er in both structure and focus. Olmstead-Rumsey (2020) builds on the
quality-ladder tradition in a duopoly with a competitive fringe environment
and studies concentration dynamics measured by the market share of the
largest �rm. By contrast, this paper adopts a Hopenhayn-style framework
with monopolistic competition, heterogeneous entrants, and endogenous exit,
which is better suited to studying turbulence arising from entry, exit, and
�rm-level churning. In this setting, innovation ability is distributed across
�rms, and a �rm's growth depends jointly on size and innovative capacity,
generating a two-dimensional no-churning locus. This structure allows the
analysis to discipline higher-order moments of �rm dynamics, such as skew-
ness in the growth rate of entrants. While the papers share an interest in
how innovation incentives shape aggregate outcomes, their mechanisms are
complementary: reduced innovation by laggards primarily a�ects concentra-
tion, whereas diminished innovative capacity among entrants is particularly
relevant for turbulence.

2. A Model of Turbulent Growth

The model features discrete time and a monopolistically competitive in-
termediate sector with a mass of �rms, each producing a unique good sold to
a perfectly competitive �nal sector. The �nal sector aggregates these goods
into a single output, used for household consumption and �rm creation. In-
novation occurs along two dimensions: technological depth, via process inno-
vation for existing goods, and technological breadth, via the introduction of
new goods. Firms face idiosyncratic shocks to R&D productivity and decide
whether to exit after observing their shock. Those that stay hire labor for
production and R&D to lower future costs. New �rms pay a sunk entry cost

and Cao (2015), Acemoglu et al. (2018), Akcigit and Kerr (2018), Peters (2020), and
De Ridder (2024).
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in output units to introduce a new good and decide whether to exit after
their �rst draw. Aggregate variables evolve deterministically. Households
supply labor inelastically and choose consumption and saving.

2.1. Households

The economy is populated by a representative household of size Lt =
L0(1+λ)t, where λ is the population growth rate. The household is endowed
with Lt units of labor that it supplies inelastically. It makes decisions on how
to allocate its income to consumption goods or saving at each point in time.

The representative household maximizes its lifetime utility function,

max
{ct,st}∞t=0

∞∑
t=0

βtLt ln ct, (1)

by choosing the sequence of per capita consumption in the �nal good, ct, and
their saving in a portfolio of stocks of real value st+1.

The household derives its income from the per capita real wage wt, and
a return rt on the portfolio of stocks, while it allocates this income to con-
sumption and saving in the portfolio itself. As in Bilbiie et al. (2012), the
portfolio is managed by a risk-neutral manager who operates in a perfectly
competitive environment. It includes all �rms that populate the economy
and new �rms, whose entry cost is �nanced by issuing equity. This implies
that the idiosyncratic risk is diversi�ed away, simplifying the problem. After
normalizing the price index to 1, the household faces the following budget
constraint expressed in real terms:

st + ctLt ≤ (1 + rt)st−1 + wtLt. (2)

Combining the �rst-order conditions, I obtain the Euler equation that
governs the household's saving decision,

1 + rt+1 =
1

β

(
ct+1

ct

)
. (3)

2.2. Final Sector

A perfectly competitive �nal sector sells the �nal good to the household
and to entrepreneurs who need it to �nance the sunk entry cost. It assembles
the �nal good according to a CES aggregator:

Yt =

[∫ Nt

0

x
ϵ−1
ϵ

i,t di

] ϵ
ϵ−1

, (4)
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given a real output Yt, made from units of the di�erent intermediate goods
xi,t, the only inputs. Nt is the mass of goods, and ϵ > 1 is the elasticity of
substitution across them. The price index, which is chosen as the numeraire,
is:

Pt =

[∫ Nt

0

P 1−ϵ
i,t di

] 1
1−ϵ

, (5)

where Pi,t is the price of each good i.
The representative retailer maximizes its pro�ts by supplying the house-

hold and potential entrants with units of the basket of goods. The pro�t
maximization yields the following demand schedule for good i:

xi,t = Ytp
−ϵ
i,t , (6)

where pi,t =
Pi,t

Pt
is the relative price.

2.3. Intermediate Sector: Production, Innovation, Entry, and Exit

The intermediate sector, populated by Nt �rms producing a unique good,
consists of incumbents, entrants, and exiting �rms.

The demand schedule derived above implies a revenue per good of:

Pi,txi,t︸ ︷︷ ︸
Revenue

= PtYt︸︷︷︸
Market
size

p1−ϵ
i,t︸︷︷︸

Market
share

, (7)

which can be decomposed into market size and market share.5 The de-
composition provides an insight into the competitive process underlying the
model. As ϵ > 1, �rms can gain market share at others' expense by lower-
ing their relative price. Additionally, two opposite forces a�ect revenue per
good: changes in aggregate spending, namely market size, and changes in
the number of producers, which dilute market shares. Market size is beyond
the control of the �rm, therefore the only way to increase their revenue is for
the �rm to reduce price and steal market share from others.

The following subsections describe, in turn, the decisions of incumbents
and entrants.

5By rearranging equation (7) to isolate p1−ϵ
i,t , one can observe that it equals the ratio

of expenditure on good i and total expenditure, the de�nition of market share.
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2.3.1. Incumbents

Incumbents face a demand given by equation (6). They employ labor that
is allocated to produce the intermediate good, lxi,t

, to cover the �xed costs
of production ϕ, and to produce knowledge that reduces the future cost of
production, namely to perform R&D, lZi,t

. They maximize their value, which
is the present value of the stream of dividends, by choosing the optimal price,
production labor, R&D labor, and whether to exit the market or not.

The �rm's problem has a static and a dynamic component. I separate
them to derive a cleaner Bellman equation as in other related works, such
as Acemoglu et al. (2018). The static component is a per-period dividend
maximization, holding constant R&D investment. This allows me to derive
an optimal operating pro�t, conditional on the state, that can be plugged
into the Bellman equation. The dynamic component involves an investment
decision to maximize the �rm's value, with an option to exit the market if it
turns negative.

Static Problem: Dividends

In each period, dividends are given by

πi,t = pi,txi,t − wt(lxi,t
+ lZi,t

+ ϕ). (8)

Following the literature, the production technology includes only productiv-
ity and labor, such that:

xi,t = Zθ
i,tlxi,t

θ > 0, (9)

where Zi,t is the endogenous stock of knowledge possessed by �rm i, and the
parameter θ determines the returns to knowledge, or the extent to which
production is knowledge-intensive.

The static maximization problem requires a choice of production labor, a
price and a quantity to maximize equation (8), subject to demand (6), and
the production function (9). The �rst order conditions yield a production
labor demand of:

lxi,t
=

[
ϵ− 1

ϵwt

(
Yt

Nt

) 1
ϵ

Z
θ ϵ−1

ϵ
i,t

]ϵ
. (10)

Firms' production labor demand is increasing in the productivity level, Zθ
i,t,

and decreasing in wage. It increases with the overall spending on �nal goods
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and declines in the number of goods. In other words, it increases in market
share.

A labor demand schedule as in (10) implies pricing at a constant markup:

pi,t =
ϵ

ϵ− 1

wt

Zθ
i,t

. (11)

Importantly, �rms can reduce their relative price by improving their techno-
logical knowledge.

As anticipated earlier, from equation (7), reducing the relative price, thus
gaining market share, is the only way for �rms to increase their revenue.
Therefore, equation (11) illustrates the fundamental way in which dynamic
competition occurs: by accumulating technological knowledge faster than
the rate of wage growth, �rms can lower their relative price and steal market
share from competitors. In other words, �rms have an incentive to innovate
because they can gain market share at the expense of others, and increase
their revenue as a result.

Substituting (10) and (11) into equation (8) and using equation (9), div-
idends can be re-expressed as a function of Zi,t, and lZi,t

only.

Heterogeneity and Dynamics: Firm Value Maximization and Exit Decision

Here, I present the dynamic problem of the �rm. Each �rm takes an
investment decision to increase its future knowledge, thus reducing its pro-
duction cost. The R&D productivity is subject to an idiosyncratic shock,
driving heterogeneity in �rms' productivity level.

Firms increase their future stock of knowledge through R&D investment.
Following Peretto and Smulders (2002), the R&D technology is:

Zi,t − Zi,t−1 = αi,t−1Z
µ
i,t−1Z

1−µ
t−1 l

ζ
Zi,t−1

, (12)

0 < µ < 1 is a parameter that regulates the private and social returns
to knowledge, αi,t > 0 is the �rm-speci�c productivity of R&D, and Zt ≡
1
Nt

∫ Nt

0
Zi,tdi is the knowledge spillover, namely, the element that captures the

partial non-excludability of knowledge, and the consequent ability of �rms
to make use of knowledge acquired by others.

An R&D technology of this kind captures four important elements. First,
new knowledge is a function of the existing stock of knowledge due to its
cumulative nature, i.e. new knowledge builds on existing knowledge. The
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linearity is the simplest and most tractable speci�cation in which knowledge
is the factor that drives long-run exponential growth at a constant rate.6

Second, only the �rm that produces good i possesses the expertise to
improve that line of production, based on the idea that a large driver of
innovation is �rm-speci�c in-house technology, widely documented empiri-
cally (Dosi, 1988; Garcia-Macia et al., 2019). Therefore, R&D is performed
in-house, implying that �rms know what product-line they are improving
upon when the investment decision is taken. The presence of this element is
necessary to deliver the scale dependence in growth rates that generates the
mean reversion that produces churning and makes the �rm-size distribution
stationary.

Third, in line with empirical evidence (Laincz and Peretto, 2006; Ha and
Howitt, 2007; Madsen, 2008), the spillover occurs from average knowledge
and does not increase with the number of di�erent goods produced in the
economy. This speci�cation incorporates the idea that the technological dis-
tance between lines of research increases as the product market grows larger,
thus diluting away the knowledge spillover and eliminating the scale e�ect,
as shown in previous works (Peretto, 1998; Dinopoulos and Thompson, 1998;
Young, 1998).

Fourth, the �rm-speci�c shock αi,t follows an AR(1) process:

logαi,t = (1− ρ) logα + ρ logαi,t−1 + ξi,t, ξi,t ∼ N(0, σα)

0 ≤ ρ < 1
(13)

where ξi,t is the draw and σα its standard deviation.
At the beginning of each period, after observing the draw, each �rm

invests to maximize its value:

max
{lZi,t+h

,Zi,t+1+h}∞h=0

Vi,t = max

{
0, πi,t(lZi,t

, Zi,t)+Et

∞∑
h=1

h∏
q=1

1

1 + rt+q

πi,t+h(lZi,t+1
, Zi,t+1)

}
(14)

Future pro�ts are discounted using the risk-free interest rate r, which is
determined by the representative household's time preferences. The dynamic

6Peretto (2018) and Massari and Peretto (2025) provide a generalization that allows
for new knowledge to exhibit increasing or decreasing returns in the existing stock of
knowledge.
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optimization can be re-expressed as a Bellman equation:

V (Zi,t, αi,t) = max

{
0, max

{lZi,t
}

{
πi,t(Zi,t, lZi,t

) +
1

1 + rt+1

EtV (Zi,t+1, αi,t+1)

}}
(15)

constrained by the knowledge accumulation equation (12).
Lastly, as captured by the max operator, �rms face an exit decision at

the beginning of the period. If their value falls below zero, they will decide
to dismantle the �rm and exit the market permanently. Note that this model
does not require any other source of exit, such as a death shock. Exiting the
market is fully within the control of the �rm.

2.3.2. Entry: Creation of New Goods

I now turn to the description of the entry decision. Entry occurs as long
as the present value of the expected stream of dividends exceeds the sunk
cost of setting up a �rm. Entrants issue equity to �nance the cost of entry.
The payment of the sunk cost is in units of output. Firms set up at time t
face the same problem as incumbents in period t+ 1.

When taking the entry decision, entrepreneurs know that their knowledge
level in the following period will be drawn out of a lognormal distribution (as
the �rm size distribution is skewed in the data) around the average knowledge
level in the economy. Entry knowledge is given by:

Zd
t+1 ∼ Lognormal(χZ , σ

E
Z )Zt+1. (16)

Entrepreneurs will also draw their initial R&D productivity from:

αd
t+1 ∼ Lognormal(χα, σ

E
α ). (17)

The distribution is lognormal as entrants display skewness in their employ-
ment growth rates (Decker et al., 2016b).

As all potential entrants draw from the same distributions, their value is
the same. Given an expected initial level of productivity and productivity of
R&D, there is entry at time t as long as:

vEt = EtV (αd
t+1, Z

d
t+1) ≥ Zθ

tN
1

ϵ−1

t fE, (18)

where the right side of the inequality is the entry cost made up of a �xed

component fE and of the technological depth, Zθ
t , and breadth, N

1
ϵ−1

t , of the
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economy. This speci�cation has a practical purpose: in a growing economy,
the entry cost must scale with everything else. Otherwise, as the economy
grows richer, setting up new �rms would become cheaper, introducing a trend
in the entry rate which is counterfactual. The speci�cation presented here is
the simplest one consistent with this property, but not the only one that can
deliver it. The idea captured by this speci�cation is that with an increase in
the sophistication of the production techniques and of the variety of goods
available, the capital required to set up a �rm increases proportionally.

2.4. Equilibrium

The equilibrium of the model is de�ned by:

� a wage wt, interest rate rt and price index (5) that �rms and the house-
hold take as given;

� a demand function (6) from the �nal sector for the intermediate goods;

� a labor supply Lt, and a demand function for production, overhead and
R&D labor;

� an Euler equation (3) for the representative household;

� the free entry condition (18);

� a law of motion of �rms:

Nt+1 = Nt +NEt −NXt , (19)

with NEt being the mass of entering �rms, and NXt the mass of exiting
�rms;

� a value function V (Zi,t);

� and a distribution Γt(zt) of relative knowledge, zi,t, where zi,t =
Zi,t

Zt
,

such that the following conditions hold.
First, the interest rate adjusts to guarantee that the value of the portfolio

held by the household equals the aggregation of the value of all �rms:

st =

∫ Nt−NXt

0

vi,tdi+

∫ NEt

0

vEi,tdi. (20)
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Second, exploiting equation (5), the prices for each variety are such that
they guarantee goods market-clearing:

Yt = ctLt + Zθ
tN

1
ϵ−1

t fENEt . (21)

Third, the wage adjusts to ensure that quantity of labor demanded by
each �rm for each activity equals its inelastic supply:

Lt =

∫ Nt

0

(lxi,t
+ lZi,t

)di+ ϕNt. (22)

2.4.1. Steady-State

I solve the model for the stationary steady state equilibrium numerically.
I present the stationarized version in Appendix A. Appendix B includes a
description of the algorithm used to solve the model.

There exists a time-invariant distribution of �rms over relative knowledge
Γ(z) in steady state that is unique given any initial distribution. The fol-
lowing section describes the forces that make this distribution unique and
stationary.

Before introducing output growth, it is useful to de�ne relative (to the
arithmetic average) knowledge

zi,t =
Zi,t

Zt

, (23)

and the number of �rms per capita

nt =
Nt

Lt

, (24)

which is also the inverse of average �rm size and remains constant in steady
state, where Nt/Nt−1 = 1 + λ. For this class of models, the stationarity
of average �rm size is discussed in Peretto and Connolly (2007). The basic
insight is that as population increases, the market size gets higher, thus
increasing operating pro�ts. Larger pro�ts stimulate entry. Entry drags
down the average market share, restoring the orginial pro�t level at the
original average �rm size.

Furthermore, to simplify the notation, de�ne productivity as:

Ai,t = Zθ
i,t. (25)

14



Aggregate Productivity Level

From the CES aggregator given by equation (4) and the production func-
tion in equation (9), I can express real output per capita as:

Yt

Lt

= N
1

ϵ−1

t︸ ︷︷ ︸
Tech.
breadth

At︸︷︷︸
Tech.
depth

[
1

Nt

∫ Nt

0

(Si,tNt ai,t)
ϵ−1
ϵ di

] ϵ
ϵ−1

︸ ︷︷ ︸
Allocative
e�ciency︸ ︷︷ ︸

Aggregate productivity

Lxt

Lt︸︷︷︸
Production e�ort

, (26)

where Si,t = lxi,t
/Lxt is the production labor share for �rm i.7 Output per

capita can be thought of as a combination of productivity and resources de-
voted to production. The latter element depends on the total fraction of
labor devoted to producing units of the intermediate goods � where Lxt de-
notes aggregate production labor. I focus on this model-consistent de�nition
of aggregate productivity because, as the ultimate interest of any analysis on
economic growth is the increase in household's utility, the relevant unit to
consider is the output of the �nal good � which partly goes to consumption
� and the e�ort exerted to produce it. Other de�nitions of productivity
correlate with this one.

Importantly, all terms that make up the aggregate productivity level are
endogenous and depend exclusively on a vector of relative knowledge levels
zt and R&D productivity αt.

A contribution of this paper is to decompose the aggregate productiv-
ity level into various factors that can be linked to �rm-level productivity.
Due to non-linearities, the dispersion in productivity levels and �rm sizes is
manifested in the aggregate productivity level. This decomposition shows ex-

plicitly how. Aggregate productivity includes three di�erent elements. N
1

ϵ−1

t

is the love of variety e�ect implied by the CES aggregator. This arises out
of product di�erentiation and a preference structure that rewards a larger
variety of goods in the market.

7I obtain equation (26) by plugging the production function (9) into the CES aggregator
(4), then multiplying and dividing by Lxt

At. At at the denominator moves into the
parenthesis to divide Ai,t. Lxt moves into the parenthesis to divide lxi,t . Next, to isolate
the relevance of Nt, I multiply and divide by Nt the factors in the parenthesis. I bring the
denominator out, and break it into two parts: one that remains within the square bracket,
and the other that comes out denoting the technological breadth (love of variety e�ect).
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The second term describes the technological depth of the economy, and
it corresponds to the average productivity across �rms, de�ned as:

At =

∫ Nt

0

Si,tAi,tdi, (27)

This model-consistent de�nition of average productivity is useful because it
is also commonly adopted in empirical studies (Foster et al., 2001; Melitz
and Polanec, 2015). While in those papers the choice is arbitrary, this model
o�ers a theoretical justi�cation for it.

Finally, the last term shows that aggregate productivity depends on the
distribution of weighted �rm relative productivities, as ai,t = Ai,t/At. This el-
ement describes the allocative e�ciency of the economy. The distribution of
individual productivities matters for aggregate productivity because the CES
aggregator is a power mean, which is altered by the �rms' relative produc-
tivity distribution. To understand why this term is tied to the distribution
of productivities and labor share, it is useful to notice that equation (27) can
be re-expressed as:

1

Nt

∫ Nt

0

Si,tNtai,tdi = 1. (28)

The term labeled allocative e�ciency above would therefore equal 1 under
a symmetric equilibrium, or in a model with additive aggregation of goods.
It follows that the term in bracket in equation (26) shows the contribution
of the higher moments of the productivity and �rm-size distributions to the
aggregate productivity level.

Aggregate Productivity Growth Rate

I now shift the focus to the growth rate of aggregate productivity, which,
together with the population growth rate, determines the growth rate of
output per capita in the long-run.

Proposition 1. Under a time-invariant distribution of relative productivity

levels, the long-run growth rate of aggregate productivity is a function of

population growth and of the growth rate of the arithmetic average of �rms'

productivities.

Proposition 1 highlights the sources of long-run steady-state growth. Its de-
pendence only on the �rst moment of the aggregate productivity distribution
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ensures that �rm-level productivity changes are the only relevant factors to
consider in steady state. As long as the focus is on the steady state where
the �rm-size distribution is time-invariant, there is no concern over the ag-
gregation of �rm productivity increases. I describe the economic mechanism
that delivers the time-invariant distribution in the next section.

The proposition can be expressed in a mathematical form starting from
equation (26):

1 + gproductivity =

[
nt(zt, αt)

nt−1(zt−1, αt−1)
(1 + λ)

] 1
ϵ−1

︸ ︷︷ ︸
semi-endogenous

(1 + gAt (zt−1, αt−1))︸ ︷︷ ︸
average productivity 1

Nt

∫ Nt

0
(Si,tNt ai,t)

ϵ−1
ϵ di

1
Nt−1

∫ Nt−1

0
(Si,t−1Nt−1 ai,t−1)

ϵ−1
ϵ di


ϵ

ϵ−1

︸ ︷︷ ︸
change in the distribution

, (29)

This expression resembles the one in Peretto and Connolly (2007), with
the addition of the last term, which depends on heterogeneity in productivity
levels and labor shares. The semi-endogenous component depends only on
population growth in steady state as the average �rm size is stationary. This
term is sometimes referred to as expanding variety, and it emerges from the
CES aggregator, which rewards a higher number of goods. gAt ≡ At/At−1− 1
is the growth rate of average productivity between t− 1 and t, and it will be
the focus of the remainder of the paper. Finally, the last term signals that
aggregate productivity growth is dependent on changes in the distribution
of relative productivity. Nevertheless, given a time-invariant distribution in
steady state, the long-run growth rate of aggregate productivity is determined
exclusively by the �rst two terms, while the last one is relevant along the
transition, an exploration left for future research.

3. Sources of Firm Growth, Churning, and Stationarity

In contrast with the deterministic and symmetric model proposed by
Peretto and Connolly (2007), this model introduces a mean preserving spread
to the ability to innovate. By comparing this model to the one where the
�rm size distribution collapses to a single point, one can study the role that
higher-order moments of interest play in shaping the aggregate productivity
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growth process. However, caution is required as heterogeneity in �rm sizes
and growth rates is endogenous and interdependent with �rms' investment
decisions. Therefore, the analysis must proceed with the understanding that
the shape of the �rm size distribution and all dimensions of turbulence are
not exogenous factors that the analyst can arbitrarily change to derive their
e�ect on aggregate variables. They are, instead, outcomes of the same forces
that drive economic growth.

This interdependence raises a key question: how can there be (i) growth
rate di�erentials, (ii) constant returns to the growth driving factor (and in-
creasing returns to the private factors overall), and (iii) a stationary �rm
size distribution? The elements (i) and (ii) may suggest a higher growth rate
for relatively larger �rms, thus promoting a tendency towards monopoly and
violating element (iii).

To better illustrate the mechanism, I temporarily shut down entry and
exit. I will reintroduce them in the next section where I discuss their role
in detail. I do that by setting the parameters λ = 0, fE = ∞, ϕ = 0.
The next two subsections discuss the mechanism that preserves the �rm size
distribution stationarity and its implications.

3.1. Growth Rate Di�erentials without Entry and Exit

In what follows, I show the sources of growth rate di�erentials across
�rms, which cause churning. Additionally, I discuss the conditions under
which growth rates are decreasing in relative knowledge conditional on R&D
productivity. This negative relation is what drives the distribution station-
arity.

To show the convergence process to a stationary distribution, I focus on
the partial equilibrium of the model. The general equilibrium e�ects are not
fundamentally di�erent from those discussed in Peretto and Connolly (2007).

Using the approximation gAi
t+1 ≈ θgZi

t+1, I can derive the growth rate of an
arbitrary �rm from equation (12) after plugging in the optimal lZ value:

gAi
t+1 ≈ αi,t+1z

µ−1
i,t lZi,t

(zi,t,Etαi,t+1)
ζ . (30)

This growth rate depends on three elements: the R&D productivity, the
initial relative knowledge level, and the R&D e�ort exerted by the �rm.

The term zµ−1 implies that for any given R&D investment and R&D
productivity, the growth rate declines in relative knowledge since private
returns to knowledge µ < 1. The knowledge spillover drives this e�ect by
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operating as a force of attraction: �rms above the average knowledge level
will be dragged down in relative terms by the spillover, while �rms below the
average knowledge level will be lifted by it. The larger the �rm, the larger the
R&D productivity and investment required to balance this force of attraction.
Private returns to knowledge partially o�set this e�ect by facilitating the
accumulation of knowledge for �rms that already possess more.

Second, R&D is a function of relative knowledge. The value maximization
yields the following policy rule:

l1−ζ
Zi,t

=
1

1 + rt+1

αi,tz
µ
i,t

wt

(
1 + gZt+1

)Et

[
wt+1l

1−ζ
Zi,t+1

αi,t+1z
µ
i,t+1

+ ζ
∂πi,t+1

∂zi,t+1

+
µwt+1lZi,t+1

zi,t+1

]
,

(31)
with

∂πi,t

∂zi,t
= θ(ϵ− 1)wt

[
ϵ

(ϵ− 1)
− 1

][
Zθ ϵ−1

ϵ
ϵ− 1

ϵwt

(
yt
nt

) 1
ϵ

z
θ ϵ−1

ϵ
−1

i,t

]ϵ
. (32)

Equation (31) shows that �rms will choose R&D investment by balancing
the present value of relative knowledge's marginal bene�t and marginal cost.
The term outside the bracket is the inverse of the marginal cost of new
relative knowledge � with a slight modi�cation as I have kept the diminishing
returns to R&D on the left side. It increases with the price of R&D and with
average knowledge growth, as faster average knowledge growth requires more
investment for �rms to keep up with the others. It instead decreases with
R&D productivity and relative knowledge to the extent that �rms internalize
it, as these two elements determine the e�cacy of R&D.

The �rst term in the bracket is the following period's marginal cost of
creating new relative knowledge. Firms smooth their R&D investment over
time while preferring larger investments in periods when it is cheaper.

The second and third elements in the square bracket are the marginal
bene�t of creating relative knowledge. The �rst obvious reason to create new
relative knowledge is to increase pro�ts. Additionally, if knowledge creation
is facilitated by the internal stock of knowledge within the �rm, namely if
µ > 0, �rms have an extra incentive to invest as their current investment will
be bene�cial when investing in future periods.

Regarding growth rate di�erentials and the stationarity of the �rm size
distribution, the key question regards the relation between R&D investment
and relative knowledge.
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Pro�t is concave in relative knowledge as long as (ϵ− 1)θ < 1. Therefore,
the relation between the incentive to innovate and the relative knowledge level
of the �rm depends on some crucial parameters: µ, ζ, θ, and ϵ, which repre-
sent respectively the private returns to knowledge in new knowledge creation,
the strength of diminishing returns to R&D, the elasticity of production with
respect to the stock of knowledge, and the degree of substitutability across
goods which determines the elasticity of demand for each good.

In particular, µ constitutes a force of divergence: �rms that possess more
knowledge are also better able to create more of it, thus reinforcing their
advantage over time. Furthermore, the degree of knowledge intensity of the
economy, θ, compounds this e�ect by mapping di�erences in knowledge levels
into di�erences in �rm size, production and, ultimately, pro�ts. Therefore,
the parameters θ and µ are essential in determining the shape of the �rm
size distribution and raise concerns about its non-degeneracy.

The other two parameters counter these forces of divergence. Of partic-
ular interest is the role of ϵ. Indeed, the condition for concavity of pro�ts
in relative knowledge requires either diminishing returns to knowledge in
production, or a low enough elasticity of substitution. In the presence of
product di�erentiation, consumers' preference for variety ensures that the
most productive good will not be the only one sold. If this preference for
variety is strong enough, the incentive for technologically advanced �rms to
improve their productivity faster than their competitors is overwhelmed by
the inability to gain enough market share to justify the e�ort.

In other words, diminishing returns to relative size originate from the
demand side through a mechanism that resembles the one Acemoglu and
Ventura (2002) emphasized in a di�erent context. Firms that gain more
technological knowledge relative to others increase their production volume.
By producing more, they face a lower price as product di�erentiation ensures
that �rms face a downward-sloping demand curve. This price reduction is,
in turn, responsible for dragging down the return to further knowledge ac-
cumulation. As a result, incentives to innovate decline as �rms grow larger
relative to others.

This paper emphasizes this aspect because it implies that standard mod-
eling assumptions deliver stationarity and endogenous churning. They do
so by creating an endogenous combination of ability to innovate and size
that is the attractor of the endogenous state variable. The next subsection
illustrates how this result arises. I focus on the case in which the forces of
convergence prevail. The existing literature has addressed all other cases, as
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I illustrate later.

3.2. Prediction 1: Stationarity, and Endogenous Churning

This subsection discusses the �rst relevant set of predictions of the model.
Although the production technology exhibits increasing returns to the pri-
vate factors of production, the �rm-size distribution is stationary and non-
degenerate for parametrizations that deliver declining growth rates in �rms'
relative sizes. Consequently, churning arises endogenously in the form of con-
ditional mean-reversion. Notably, the strength of this phenomenon depends
on the R&D investment decisions of �rms.

Figure 1 illustrates the phase diagram that describes this convergence
process by showing the expected evolution of �rms over relative productivity
and R&D productivity. The LL locus shows the long-run expectation of the
exogenous AR(1) process that characterizes the evolution of R&D produc-
tivity, namely the unconditional expectation of equation (13).

The convergence process over relative productivity can be understood by
analyzing the R&D technology given in equation (12), combined with the
policy function (31), which can be rearranged to yield:

ai,t+1(zi,t+1)

ai,t(zi,t)
=

(1 + αi,tz
µ−1
i,t lZi,t

(αi,t, zi,t)
ζ)θ

1 + gAt+1

. (33)

At this point, it is possible to construct a locus over ai,t and αi,t, along
which the relative productivity level remains constant over time. I call this
the no-churning locus. It is given by:

1 + gAt+1 = (1 + αi,tz
µ−1
i,t lZi,t

(αi,t, zi,t)
ζ)θ. (34)

This no-churning locus shows the values of relative productivity and R&D
productivity at which productivity growth rates equal the average productiv-
ity growth rate, which �rms take as given. For any R&D productivity level,
convergence to the no-churning locus requires �rms' growth rates to decline
in relative productivity. This happens when the forces of convergence are
stronger than those of divergence. As the problem is stochastic, �rms are
virtually never on the no-churning locus. Therefore, growth rates are not
equalized in each period, but only on average. Although �rms tend endoge-
nously towards the no-churning locus, the shock disrupts their position in the
state-space every period. This is one of the key results of the paper: churning,
hence turbulence, arises endogenously as the result of �rms' optimization.
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Figure 1: Turbulence, �rm growth, and stability.

Note: Phase diagram over the state variable and the exogenous shock. The no-churning
locus represents the combination of relative productivity and R&D productivity for which
the �rm's growth rate equals the growth rate of average productivity. The LL locus shows
the long-run expectation of R&D productivity.

Furthermore, as Figure 1 shows, the no-churning locus is upward-sloping.
This positive slope illustrates that �rms with a persistently higher ability
to innovate will eventually manifest it in their relative size and not in their
growth rate. Understanding why this positive slope arises is crucial to rec-
oncile two seemingly contradictory aspects of the �rm growth process. First,
�rms' productivity growth is strictly increasing in R&D productivity, mean-
ing that more innovative �rms grow faster, all else constant. Second, more
innovative �rms necessitate less investment or knowledge spillovers to main-
tain their position within the relative productivity distribution. Therefore,
how is it possible that the most innovative �rm does not grow faster than
others forever, thus monopolizing the market in the limit? As more innova-
tive �rms grow relatively larger, their growing size is responsible for reducing
their investment. Eventually, these �rms will reach a level of relative pro-
ductivity such that the forces of attraction are strong enough to balance
their high ability to innovate, thus leading them to grow at the same rate as
average productivity.

The conceptualization of a no-churning locus and its implications are the
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key contributions of this paper. Importantly, the mechanism that delivers
endogenous churning and a stationary �rm size distribution is responsible for
deviating from Gibrat Law, i.e. the hypothesized absence of any correlation
of �rm growth and relative size. Gibrat Law is at odds with the data (Sutton,
1997), especially in manufacturing industries (Audretsch et al., 2004), which
arguably perform more R&D than service industries.

Because of its tractability, much of the literature relies on assumptions
that deliver Gibrat Law (Klette and Kortum, 2004; Acemoglu and Cao, 2015;
Acemoglu et al., 2018). Some models depart from Gibrat Law, but through
mechanisms di�erent from those emphasized here.8

The framework can also generate deviations from Gibrat Law in the op-
posite direction, with larger �rms growing faster and a tendency toward
monopoly. In the limit, such parameterizations resemble models of creative
destruction with a monopolist and an innovating entrant, such as Aghion
and Howitt (1992), or highly concentrated industries as in Laincz (2009). In
contrast to those settings, however, the present framework nests both con-
vergent and divergent �rm dynamics within a uni�ed structure, depending
on the relative strength of innovation incentives and competitive forces.

Estimates of Gibrat's law coe�cients � such as those reported in Bottazzi
et al. (2007) � vary across industries, suggesting that strict proportional
growth is not a general empirical regularity. While some sectors may exhibit
tendencies towards monopoly, this is not the norm across most industries.
The relevance of productivity churning for aggregate growth can be assessed
using standard decompositions, such as Foster et al. (2001) or Melitz and
Polanec (2015), incorporating the modi�cation proposed in (Massari, 2025).
These decompositions quantify the direct contribution of churning to aggre-
gate productivity growth. However, deviations from Gibrat Law also a�ect
�rms' investment incentives, in�uencing growth dynamics through channels
that such accounting exercises do not capture.

8For example, in Akcigit and Kerr (2018) deviations arise because incumbents engage
in horizontal innovation whose intensity decreases with �rm size, while vertical innovation
� arguably the main driver of growth (Garcia-Macia et al., 2019) � is independent of
size. The two frameworks therefore o�er complementary explanations for deviations from
Gibrat Law. Similarly, Thompson (2001) generates declining growth rates with size even
when R&D is independent of it; my model can reproduce this outcome under speci�c
parameterizations, though doing so removes economically relevant forces.
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3.3. Stationarity in a Simpli�ed Environment

This section proves stationarity after introducing a few simplifying as-
sumptions for the purpose of mathematical tractability.

Proposition 2. In partial equilibrium, and under the following simpli�ca-

tory assumptions:

� αi,t is �xed, strictly positive, and �nite;

� Agents are su�ciently impatient to ensure that discounting by two peri-

ods yields approximately 0, while discounting by one period yields pos-

itive values.

the �rm size distribution is stationary under two requirements: ζθ(ϵ − 1) <
1−µ, and [θ(ϵ−1)−1]G < 1, with G being a positive combination of variables

and parameters.

The �rst assumption helps by removing the expectation operator from the
policy function. Proving stationarity under �xed di�erences is particularly
noteworthy as it highlights one of the strengths of this model relative to the
existing literature: stationarity of the �rm size distribution does not arise
out of assuming that di�erences across �rms fade away with time. Instead, it
arises because of an endogenous market mechanism arising from standard in-
dustrial organization assumptions that disciplines �rms' optimal investment
decisions. The second assumption is motivated by algebraic convenience, as
it simpli�es the di�erentiation of the policy function with respect to relative
knowledge.

Of the two requirements that ensure stationarity, the �rst is the more
interesting. It highlights the relationship between the forces of convergence
and divergence that determine whether the distribution converges, diverges,
or is described by Gibrat Law. The second requirement arises from the
discrete nature of the problem and vanishes when the problem is speci�ed in
continuous time. Moreover, it is always satis�ed when pro�t is concave in
relative knowledge.

The proof for proposition 2 is in Appendix C, while here I provide the
intuition. It relies on demonstrating that (i) productivity grows at a rate
that is strictly decreasing in relative knowledge, and (ii) the range of growth
rates as a function of relative knowledge includes the growth rate of aver-
age knowledge. These two conditions imply that �rms that are below the
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average level of knowledge will grow faster than average, thus converging to
the average knowledge level. Firms that are above it will grow slower, thus
converging to average as well.

4. Entry and Exit

In this section, I relax the assumptions introduced in the previous section
to analyze how the process of entry and exit interacts with the rest. Speci�-
cally, I remove restrictions on the parameters fE, ϕ, and λ. However, I still
work in an environment where the forces of convergence prevail. A positive
�xed cost of production can turn the �rm value negative, thus allowing for
exit. A �nite value for the entry fee can make entry possible. As entry oc-
curs, incumbents face competition from entrants, and the continuation value
of some of them becomes negative, thus forcing them to exit. Finally, a pos-
itive population growth rate ensures that the steady-state net entry rate is
positive, as explained above.

What ensures that the presence of entry and exit will preserve the results
illustrated above regarding the stationarity and non-degeneracy of the �rm-
size distribution? The model has one �rm-speci�c state variable, the knowl-
edge stock, and the �rm-speci�c exogenous shock. The exogenous shock is
stationary by assumption. Furthermore, under the set of parameter values
under consideration, the analysis provided in the previous section suggests �
by proving it in a simpli�ed environment � that relative knowledge evolves
according to a stationary process. To the extent that this last claim is true,
the conditions used in Hopenhayn (1992) to prove Theorem 3 on the ex-
istence of a stationary equilibrium with entry and exit are veri�ed. These
conditions consist of a stationary process of R&D productivity and relative
knowledge; a value function that is strictly increasing and continuous in R&D
productivity and relative knowledge and strictly decreasing in the number of
�rms; and an entry cost below a threshold to allow entry.

The intuition behind Hopenhayn's proof that is valid here is that an
adjustment in the number of �rms is the mechanism that balances the entry
and exit rates through an e�ect on the pro�tability of �rms. If the entry rate
exceeds the exit rate by more than the population growth rate, the number
of �rms per capita will rise over time, thus depressing pro�ts as demand
spreads over more products. This reduction in pro�ts would lead fewer �rms
to enter the market and more �rms to exit until entry and exit rates are such
that the number of �rms per capita remains constant over time.
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There is, however, a signi�cant conceptual di�erence relative to Hopen-
hayn's model. Di�erences in productivity levels across �rms are the endoge-
nous outcome of their investment decisions, as opposed to the outcome of a
shock. While this di�erence does not disrupt the results obtained in Hopen-
hayn as long as relative productivity evolves according to a stationary pro-
cess, its relevance is noteworthy �rst because the productivity distribution
across �rms is the result of �rms' choices; second, because the steady-state
aggregate growth rate of the economy is endogenous and dependent on �rm-
level investment decisions.

The following subsection illustrate the role that entry and exit play in the
model. The one after presents some economic implications of adding entry
and exit.

4.1. E�ects Linking Entry, Exit, and Growth

Entry, exit, and growth interact through several e�ects. In this subsec-
tion, I illustrate them.

E�ect 1: Expanding Variety

Assuming a CES form for the aggreagation of di�erent goods implies a
love for variety. This e�ect matters for growth as shown in (26), where the
output growth rate depends on the technological breadth of production.

E�ect 2: Level Replacement

The model allows for simultaneous entry and exit. In addition, entrants
and exiters have on average a di�erent productivity level. The average pro-
ductivity level of exiters is fully endogenous, whereas the average productivity
level of entrants depends on the parameters of equation (16). If entrants have
on average a higher productivity level than exiters, more entry and exit will
increase growth through this channel. In a way, this channel has the same
aggregate implications for growth of the class of models built on Aghion and
Howitt (1992), although the mechanism that leads to replacement is di�er-
ent, and in this model entry does not need to occur in the same industry as
the one of exiters. However, an important di�erence is that in this model this
e�ect will tend to weaken with an increase in exit. That happens because
exiters tend to be the least productive �rms. Therefore, expanding the exit
zone wil lead to more productive �rms exiting the market. In the limiting
case of 100% exit, the relative productivity level of exiters is 1.
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E�ect 3: Growth Replacement

This e�ect is conceptually the same as the previous one, with the dif-
ference that the �rm-level variable of interest is not productivity, but R&D
productivity. If entrants are on average better innovators than exiters, entry
and exit will e�ectively determine a substitution of worse innovators with
better innovators, raising the average ability to innovate in the economy.
This is the main e�ect emphasized by the literature on �rm dynamics and
growth, for example Acemoglu et al. (2018).

E�ect 4: Cost Spreading

A parameter change that facilitates entry, will increase the steady state
number of �rms. Conversely, a parameter change that facilitates exit will
decrease the steady state number of �rms. A change in the number of �rms
is a change in the average market share, which has consequences for R&D
investment. From equation (31), R&D investment decreases in the number of
�rms. The cost spreading e�ect explains this result: as the cost of innovation
is spread on all units sold, a more crowded market where each �rm sells fewer
units reduces the incentives to innovate. This e�ect is emphasized in the
symmetric version of this model (Peretto and Connolly, 2007).

E�ect 5: R&D-Growth Decoupling

A �nal e�ect relates to the �rm-size distribution. As the return to R&D
investment depends on the R&D productivity but also on the market share,
any force that a�ects the �rm size distribution will a�ect the returns to R&D
in di�erent ways for di�erent �rms. Therefore, a change in aggregate R&D
does not necessarily mean that each �rm changed its R&D in the same way.
It could be that �rms that are on average worse innovators increased their
R&D, while �rms that are better innovators decreased it, with an e�ect on
growth that could go in either direction. Because of this e�ect, the model
can conceive a change in aggregate R&D accompanied by a change in the
opposite direction in growth. Anything that a�ects the entry rate will a�ect
the �rm size distribution for two reasons: �rst, the �rm size distribution
is an average of the continuing incumbents distribution and the entrants'
distribution weighted by the entry rate; second, a change in the entry rate will
a�ect the exit rate, thus modifying the distribution of continuing incumbents.
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4.2. Prediction 2: Firm Life Cycle

As in Hopenhayn, the model provides predictions over �rms' life cycle.
However, as a �rm's productivity is not a random draw, the life cycle dif-
fers. Figure 2 re-proposes the phase diagram of section 3.2 after changing
parameters to allow for entry and exit. The �rst noticeable di�erence is the
presence of an exit locus. This locus is an absorbing barrier: �rms whose
relative productivity and R&D productivity levels lie below that curve have
a negative continuation value and exit once they reach it. Unlike models of
�rm dynamics, as the �rm's value depends on the endogenous state variable,
the distribution over productivity does not have an abrupt truncation but a
smoother left tail.

R&D productivity (logs): log(
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Figure 2: The �rm expected life cycle.

Note: Phase diagram over the state variable and the exogenous shock. The exit locus
shows the combination of relative productivity and R&D productivity below which the
�rm exits the market. The other curves are those introduce in Figure 1. The �gure also
shows the expected life path of four startups that di�er in their initial draws.

Endogenous entry and exit determines all the e�ects discussed in the
previous subsection. Firm life cycle dynamics are shaped by one of them,
the growth replacement e�ect, which ensures that the R&D productivity
cross-sectional average is higher than its unconditional expectation depicted
on the LL locus. Consequently, �rms expect to convergence to the exit locus
in �nite time, as shown in Figure 2.
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Furthermore, the phase diagram highlights the relevance of the �rm life-
cycle for aggregate productivity growth. Surviving entrants with a higher
ability to innovate than incumbents gain relative productivity over time,
stealing their market share. As a result, less innovative �rms lose ground until
they exit the market when their relative productivity level is low enough to
make them unpro�table. The four arbitrary entrants depicted in the diagram
illustrate this point.

Some (Entrants A and B) exit early due to poor innovation draws; oth-
ers (Entrant D) exit immediately due to poor draws overall. Entrant C is,
instead, what is commonly known as a gazelle, namely a �rm that grows at
a fast pace. This highly innovative startup type can transform these good
ideas into a high productivity growth rate. As the �rm innovates it reaches
the no-churning locus. At that point, its R&D investment level becomes just
enough to maintain its size. Meanwhile, as the initial good ideas are ex-
plored, and the ability to turn them into new productivity gains fades away,
the quality of its new ideas reverts to the mean (in the absence of any new
good draw). The �rm will, therefore, begin to shrink as other more innova-
tive �rms gain market share at its expense. Absent any new good draw, it
will eventually become unpro�table and exit the market. This process could
be considered a form of creative destruction, where the producer of a good
(for example, a DVD player producer) drives an imperfect substitute (for
example, a VHS player producer) out of the market over time by gradually
increasing its relative e�ciency.

Since the quantitative exercise proposed in this model concerns the dis-
appearance of high R&D productivity entrants, what does the model say
about their e�ect on churning? Because entrants start small on average,
high R&D productivity entrants will cluster in the bottom right corner of
Figure 2. Therefore, they will initially be far from the no-churning locus. As
a result, they will grow fast to reach it, thus contributing disproportionately
to churning and aggregate growth.

Finally, the �gure shows the intersection between the no-churning locus
and the LL locus within the exit zone. In this case, �rms eventually exit the
market with probability 1. This is the more realistic scenario and the one
that emerges under the calibration presented below. However, a di�erent set
of parameters leads the LL locus to intersect the no-churning locus outside
the exit zone. Of particular interest is the case where the exit locus and
the no-churning locus never intersect. This implies that there exists a level
zi,t = z∗ such that v(z∗, 0) > 0 and gAi (z

∗, αi,t) > gA for any αi,t. Under this
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parametrization, any �rm that reaches size z∗ survives inde�nitely. Thus, the
�rm life cycle dynamics di�er from those shown in the �gure, but the result on
the stationarity of the �rm size distribution is preserved, since the growth-
limiting mechanism described in the previous section ensures stationarity
without requiring �rm exit.

5. Quantitative Exercise: The Disappearance of Innovative Star-

tups

This section evaluates whether the decline in highly innovative startups
can account for the observed reductions in turbulence and productivity growth
since the 2000s.

Turbulence has been declining over the past few decades in the U.S., with
marked discontinuities in job reallocation around the year 2000 (Decker et al.,
2016a, 2020a). Additionally, Decker et al. (2016b) point out that employment
growth rates among startups have changed drastically: the right tail of their
growth rate distribution shrank considerably during that period.

Meanwhile, the aggregate productivity growth rate declined signi�cantly
from the mid 2000s onward, relative to the previous decade, returning to
levels similar to those observed from the mid-1970s to the mid-1990s (Byrne
et al., 2016; Syverson, 2017; Fernald, 2018).

To answer the question, I conduct a comparative statics exercise by com-
paring model steady states under the assumption that the only change is a
thinning of the right tail of the distribution of entrants' ability to innovate,
in order to match the documented decline of high-growth startups in the U.S.
(Decker et al., 2016b).

I choose 2003 as the break year because it corresponds to the largest
change in the job reallocation rate among incumbents.9 Consistent with the
model's timing assumption that changes in growth respond with a one-period
lag to parameter changes, this implies 2004 as the break year for productivity
growth, in line with the existing literature.

9In the data, the job reallocation rate is de�ned as the sum of job creation and job
destruction rates divided by average employment, using creation and destruction at con-
tinuing establishments between years t − 1 and t. In the model, I compute the same
statistic using the simulated model with one hundred thousand establishments.
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5.1. Calibration

This subsection presents the calibration, which consists in matching se-
lected moments. I pick as many moments as parameters to calibrate, so that
I can match them exactly. As data on business dynamism are available from
1978 to 2019, I rely on averages at an annual frequency from 1978 to 2003,
unless stated otherwise. I divide my discussion in externally calibrated pa-
rameters, namely those that have a one-to-one correspondence with a selected
moment, and internally calibrated parameters, those that interact with each
other to deliver the targeted moment.

Externally Calibrated Parameters

The externally calibrated parameters are summarized in table 1. The em-
ployment growth rate, λ, for the U.S. averages 1.9% per year. The parameter
ζ is set to 0.55 to match the return to labor in R&D in the U.S. based on
NSF data (Mand, 2019). β = 0.98 is selected to match, anticipating a growth
rate of per capita consumption of approximately 2%, a real rate of return of
approximately 4% (Gomme et al., 2011). I further set ϵ = 3.9 to match a
markup over marginal cost of 35% (De Ridder et al., 2022).

Parameter & target Symbol & value

Labor force growth λ = 1.9%
Returns to R&D labor ζ = 0.55

Discount rate β = 0.98
Elasticity of substitution between goods ϵ = 3.9

Persistence R&D productivity ρ = 0.71
Standard deviation R&D productivity shock σα = 1.89

Returns to knowledge in production θ = 0.1
Private vs social knowledge µ = 0.33

Table 1: Externally calibrated parameters.

Hall and Lerner (2010), who review the literature on the returns to R&D,
report a widely di�erent ratio of social to private returns to R&D in the
various estimations performed over the years. The only consensus seems to
be that social returns are substantially larger than private returns. In line
with Bloom et al. (2013), I target a ratio of social returns to private returns
to knowledge of 2, which requires µ = 0.33. θ is the elasticity of output
with respect to knowledge. While Hall and Lerner (2010) reports di�erent
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estimates from the literature, a value of 0.1 seems like a good compromise
between them.

Finally, I estimate from Compustat data the parameters ρ and σα. I use
all �rms with positive sales and R&D values who have at least three con-
secutive observations (which is the minimum number of consecutive periods
needed to pursue the estimation) from 1978 to 2019.10 From the computed
values of αi,t, I estimate the AR(1) process of equation (13), �nding ρ = 0.71
and σα = 1.89.

Internally Calibrated Parameters

The remaining parameters jointly determine the targeted moments im-
plied by the model. Each targeted moment disciplines a distinct margin of
the stationary equilibrium (see Appendix A for the stationary equilibrium
conditions): the entry margin (fE), the operating-cost/scale margin (ϕ), the
level and dispersion of entrants' relative productivity at entry (χZ , σ

E
Z ), the

mean and tail asymmetry of entrants' innovation outcomes (χα, σ
E
α ), and the

aggregate growth rate (α). For what concerns entrants, the model would
ideally require product-level data. Due to data availability issues, I rely on
establishment-level data.

Entry and scale. The �xed entry cost fE is chosen to match the entry rate
of new establishments which, according to U.S. Census Business Dynamics
Statistics (BDS), averages 12.7%.

The �xed operating cost ϕ is chosen to match average establishment size,
1/n = L/N , which equals 16 workers in the BDS data. In the model, average
establishment size is an equilibrium outcome, jointly determined with entry,
exit, and labor allocation. This scale margin is central in this class of models,
as establishment size determines the extent of cost spreading across �rms and
thereby a�ects incentives for R&D.

The logic underlying average establishment size as an identifying restric-
tion is as follows. Targeting average establishment size pins down the average

10I compute their level of technological knowledge using equation (9). In that equation,
I divide sales by employment to �nd productivity which in the model corresponds to Zθ

i,t.
Then, I use equation (12) while assuming that the relevant parameters take the values
presented in this section. Speci�cally, I raise the productivity computed earlier to the
power 1/θ to obtain knowledge. I then solve the equation for the αi,t of each �rm at
each time period by using the Zi,t just computed, R&D data, and the values of µ and ζ
mentioned in the previous paragraphs.
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amount of labor available per �rm. Since overhead labor demand is �xed per
establishment, this pins down the fraction of �rm-level labor absorbed by
overhead for a given �xed operating cost ϕ.11 As a result, once average es-
tablishment size is �xed, any increase in ϕ mechanically crowds out labor
available for production and R&D via the labor market clearing condition,
thereby a�ecting pro�ts, entry, innovation, and aggregate growth.

This logic can be made precise by considering the labor market clearing
condition expressed at the level of the average �rm in equation (A.8). Hold-
ing the remaining structural parameters �xed pins down �rms' production
and R&D labor demands through their �rst order conditions. Targeting av-
erage establishment size therefore �xes the labor supply side of this equation,
that is, the total amount of labor available per �rm. Since overhead labor
enters additively and is �xed per establishment, any change in ϕ shifts the
labor demand side. There is no direct �rm-level margin through which this
change can be absorbed while holding labor per �rm �xed: adjustments in
production or R&D labor alter pro�ts and �rm values, thereby a�ecting en-
try and exit and changing n. Consequently, holding the other parameters
�xed, the labor market clearing condition implies a mapping between ϕ and
n.

Entrants' productivity level and dispersion. Following Lee and Mukoyama
(2015), the average relative productivity of entrants is 0.96, which disciplines
the mean entrant initial knowledge parameter χZ . I calibrate the dispersion
of entrants' initial productivity, σE

Z , to match the exit rate of one-year-old
establishments from the BDS, which is 26.9%. This target identi�es σE

Z be-
cause exit in the model is driven by the lower tail of the entrant productivity
distribution, holding �xed the mean level of entrant productivity.

Entrants' innovation outcomes. Next, I choose χα and σE
α , which govern

the distribution of entrants' R&D productivity. The mean entrant R&D
productivity parameter χα is chosen to match evidence on the contribution
of young �rms to productivity growth. Speci�cally, I rely on Foster et al.
(2008)'s productivity growth accounting decomposition at a �ve-year horizon
and match the share of productivity growth attributed to entry, 24%. I use
Foster et al. (2008) because it covers more years of observation and uses

11Mathematically, this can be seen by dividing aggregate overhead labor ϕN by total
labor L, which implies that the overhead labor share equals ϕn, where n ≡ N/L.
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improved techniques for isolating productivity relative to earlier alternatives
(Foster et al., 2001). To discipline the dispersion and asymmetry of entrants'
innovation outcomes, I choose σE

α to match the di�erence between the 90th-
50th and 50th-10th percentiles of the startup growth distribution reported
by Decker et al. (2016b), which is a measure of skewness.

Aggregate growth. Finally, I choose α to match an average labor productivity
growth rate of 2.1%. Importantly, following Bilbiie et al. (2012), I distinguish
between data-consistent moments and model-consistent moments when it
comes to growth. Note that in this model labor productivity grows because of
an increase in average productivity and because of a variety expansion e�ect.
Since the data collection process misses the e�ect on productivity through
variety expansion, the target of 2.1% is for average labor productivity growth.

Parameter Symbol & value Main target

Entrant's mean
R&D productivity

logχα = 1.09
Entrants' growth
contribution: 24%

Entrant's mean
initial knowledge

logχZ = −3.88
Average productivity
of entrants: 0.96

Standard deviation
entrants' knowledge

σE
Z = 2.20

Entrants'
exit rate: 26.9%

Standard deviation
entrants' R&D productivity

σE
α = 1.22

90 to 50 pctile -
50 to 10 pctile: 0.17

Fixed operating cost ϕ = 2.99
Average

establishment size: 16

Fixed entry cost fE = 5.23
Establishment

entry rate: 12.7%

R&D productivity logα = −7.42
Labor

productivity growth: 2.1%

Table 2: Internally calibrated parameters.

Untargeted Moments

A few untargeted moments deserve attention. First, since the objective
of this model is to understand the consequences of a parameter change for
turbulence and growth, the only relevant moment in this regard that is not
directly targeted in the calibration is the job reallocation rate. The cali-
brated model accounts for 41% of the observed job reallocation rate among
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incumbents. This is a substantial share of overall reallocation, especially
considering that productivity di�erences across �rms are in�uenced by many
other factors � such as the external environment � which are often subject
to change (Syverson, 2011). For the same reason, the model account only
for a fraction of the dispersion in the productivity distribution across �rms.
Compared to an average across industries and years 1997 to 2016 computed
on BLS data, the model accounts for approximately 36% of the dispersion in
total factor productivity.

Second, because this is a growth model, closely matching the share of
resources devoted to innovation is important. The model generates a private
R&D-to-GDP ratio of 2.2%, which is close to the 1.5% observed in the data
for the period 1978�2003, and even closer to the more appropriate ratio of
1.9% where government expenditure is excluded from GDP.

Additionally, Figure 3 plots the counter-cumulative distribution function
(in logs) observed in the simulated model compared to a Pareto and a log-
normal distribution with coe�cients estimated from the simulated model.
As already mentioned, the model accounts only for part of the dispersion in
�rms' productivity, therefore in employment. However, it reproduces suc-
cessfully the qualitative shape of the distribution's right tail. Although the
literature has relied heavily on early results from Axtell (2001), according
to which the �rm-size distribution is well approximated by a Pareto distri-
bution, recent evidence shows signi�cant deviations from Pareto. When the
goodness of �t is estimated through Maximum Likelihood, a more appro-
priate technique for these purposes, the right tail of the distribution falls in
between a lognormal and a Pareto distribution (Kondo et al., 2023). The
�gure is also qualitatively in line with the one shown by Rossi-Hansberg and
Wright (2007) for manufacturing establishments and �rms in the US.

A further non-targeted moment is the ratio of production and non-supervisory
employees to total employment based on BLS data. This moment is directly
tied to the average �rm size. In the model, production employment is 79%
of overall employment, whereas it is 81% in the data.

Finally, as explained earlier, the model deviates from Gibrat Law, which
has been the subject of extensive empirical investigation. In its simplest
form, Gibrat's Law is tested by regressing �rms' growth rates on their initial
log size. Running this regression on one hundred thousand simulated obser-
vations, I obtain a coe�cient of −0.027. This modestly negative deviation
is consistent with the empirical literature. Early in�uential studies on U.S.
manufacturing include Evans (1987), which documents systematically neg-
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Figure 3: The �rm-size distribution.

Note: Comparison between a counter cumulative distribution function (in logarithmic
scale) for the �rm sizes generated by the model (10,000 bins from 100,000 observations)
and for a �tted Pareto distribution and lognormal distribution, estimated via maximum
likelihood from the model-generated data.

ative size�growth elasticities (especially for smaller �rms), and Hall (1987),
which �nds coe�cients generally closer to zero (around −0.03 to −0.05) in a
sample restricted to larger, publicly listed �rms. Consistent with the model's
predictions, more recent work using quantile regressions con�rms that devia-
tions from Gibrat Law are stronger among smaller �rms and tend to diminish
for larger �rms (Distante et al., 2018).

5.2. The Decline of Fast Growing Startups

Decker et al. (2016b) document that one of the most salient changes at
the turn of the new millennium is the disappearance of high-growth startups.
This change is re�ected in a reduction in the skewness of �rm growth rates,
especially among entrants � a moment targeted in the calibration. Speci�-
cally, the di�erence between the right tail (the 90th�50th percentile gap) and
the left tail (50th�10th) declines by 6.5 percentage points between 1981�2002
and 2003�2011. I calibrate the parameter σE

α , which governs the dispersion
of entrants' R&D productivity draws, to match this decline. Because the em-
pirical change re�ects the disappearance of highly innovative startups rather
than a redistribution that preserves the mean, this calibration implies both
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lower dispersion and a lower average level of innovative ability among en-
trants, reproducing the patterns documented by Decker et al. (2016b).

From a qualitative perspective, growth declines because the economy be-
comes less innovative. Average innovative ability among entrants falls as a
result of both the disappearance of highly innovative startups and a poten-
tial reduction in overall entry and exit. Job reallocation among incumbents
declines because highly innovative startups are typically small relative to the
size that would allow them to grow at the same rate as the rest of the econ-
omy. Overall, because they operate far from their no-churning locus, they
contribute disproportionately to both job reallocation and aggregate growth.
Finally, entry is a�ected in opposite directions: it is negatively a�ected by
a lower expected draw of innovative ability, and positively a�ected by the
reduction in dispersion of the innovation draw.

Table 3 presents the results for the measures of turbulence and growth
and compares them to their corresponding data moments. The �rst column
reports the results obtained by changing σE

α to match the observed decline in
skewness in the entrants' growth rate distribution. To assess the maximum
potential impact of this mechanism, the second column reports the results
from a counterfactual in which σE

α is reduced su�ciently to eliminate all
skewness.

The results in the �rst column show that the observed reduction in skew-
ness is insu�cient to account for much of the decline in growth and turbulence
measured in the data. While the reduction in σE

α contributes to the growth
and dynamism slowdown, its quantitative role is limited.

The inability of the decline in entrants' R&D productivity skewness to ex-
plain much of the observed decline in growth and turbulence does not re�ect
an inadequacy of this channel. As shown by the results in the second col-
umn, a su�ciently large reduction in σE

α can generate a substantial decline in
growth and job reallocation, though not in entry. Aside from entry � which
does not respond strongly to changes in σE

α � the presence of fast-growing
startups plays a quantitatively important role for growth and churning. The
surprising result is that, although the disappearance of fast-growing startups
is a salient feature of the data, the magnitude of the observed change is not
large enough to generate appreciable macroeconomic consequences.

These results indicate that additional mechanisms must be at play. Chan-
nels operating primarily through changes in a small subset of �rms � such as
the right tail of entrant growth � are unlikely, at the magnitudes observed
in the data, to generate sizeable changes in aggregate growth and turbulence.
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This motivates the exploration of explanations based on changes that a�ect
a broader set of �rms.

The literature has o�ered several explanations for the decline in business
dynamism. A notable trend over the same period is the slowdown in labor
force growth, which Karahan et al. (2024) estimate accounts for about half of
the observed decline in entry rates � a result that this model can replicate,
though without adding additional insights. As for the decline in churning,
proposed mechanisms include reduced responsiveness to �rm-speci�c shocks
(Decker et al., 2020a) and rising product market concentration associated
with the emergence of �superstar �rms� (Autor et al., 2020).

On the growth front, one set of explanations emphasizes changes in incum-
bent behavior associated with increased concentration (Ghazi, 2019; Olmstead-
Rumsey, 2020; Ferraro et al., 2025). An alternative view holds that the slow-
down re�ects an endogenous response to the Great Recession (Anzoategui
et al., 2019). Finally, another hypothesis is that the slowdown represents the
natural unwinding of a period of unusually fast growth. In particular, the
mid-2000s coincide with the end of the era of di�usion and adoption of in-
formation and communication technologies (ICTs), following the exhaustion
of key complementary innovations (Fernald, 2015; Gordon, 2016). The next
subsection evaluates this hypothesis by targeting the observed slowdown in
aggregate productivity growth and examining whether the implied changes
are consistent with the observed decline in turbulence.

Moment
Model

Low skewness
(-6.5 pp)

Model
No skewness

Data

∆ Job reallocation incumb. -0.35 pp -2.25 pp -2.3 pp
∆ Productivity growth -0.15 pp -0.65 pp -0.8 pp

∆ Entry -0.4 pp -0.6 pp -2.2 pp

Table 3: Results following a reduction and disappearance of highly innovative startups.

5.3. The End of the ICTs Di�usion and Adoption Era

On top of the mechanism explored in the previous subsection, suppose
that the remaining productivity growth slowdown re�ects the di�usion and
adoption of ICTs coming to an end. This subsection explores whether this
explanation can also account for a reduction in turbulence that is quantita-
tively similar to that observed in the data. Contrary to the channel explored
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above, which operates through changes in the right tail of entrants' growth
distribution, this subsection focuses on a generalized decline in R&D produc-
tivity a�ecting a broad set of �rms.

In the model, three parameters regulate �rms' innovativeness: α governs
the R&D productivity of incumbents, χZ a�ects the outcome of e�orts in
horizontal innovation, and χα determines the initial R&D productivity draw
of entrants. The exercise reduces all three parameters by the same percent-
age, capturing a broad-based decline in innovative opportunities that a�ects
incumbents and entrants symmetrically. While it would be possible to mod-
ulate changes in these parameters to match individual moments more closely,
doing so is not the objective of this section.

The reason a reduction in R&D productivity reduces turbulence is straight-
forward to understand by considering the extreme case of no �rm growth.
If �rms do not increase their technological knowledge, they do not expand
in size. Moreover, if aggregate productivity growth is zero, no �rm shrinks
either, since shrinkage in the model arises from �rms losing technological
ground relative to the rest of the economy.

Turning to magnitudes, Table 4 reports the quantitative results. The
parameter changes slightly overexplain the decline in job reallocation among
incumbents, indicating that this margin responds strongly to broad-based
changes in R&D productivity.

The e�ect on entry is quantitatively smaller, though still meaningful.
According to BDS data, employment growth declines by 0.9 percentage points
over this period, which mechanically implies an equal reduction in the entry
rate. The parameter changes account for roughly two-thirds of the remaining
1.3 percentage point decline in entry.

Taken together, these results indicate that the joint decline in productiv-
ity growth and turbulence observed in the data can plausibly be reconciled
with a generalized slowdown in innovative activity, consistent with the end
of the ICTs di�usion and adoption era.

6. Summary and Conclusions

This paper develops a uni�ed framework to study aggregate productiv-
ity growth and turbulence. Firms are monopolistically competitive, invest
in in-house R&D, and face idiosyncratic innovation shocks. Competition
for market share implies diminishing returns in relative terms, generating
endogenous churning as �rms adjust their size, while increasing returns in
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Moment
Model

Low skewness
(-6.5 pp)

Model
Low skewness and
R&D productivity

Data

∆ Job reallocation incumb. -0.35 pp -2.6 pp -2.3 pp
∆ Productivity growth -0.15 pp -0.8 pp -0.8 pp

∆ Entry -0.4 pp -0.9 pp -2.2 pp

Table 4: Results following a reduction in R&D productivity of horizontal and vertical
innovation for all �rms. These results build upon the earlier analysis on the reduction in
high growth startups, with the new parameters varied on top of the previous parameter
change. The reduction in growth is the targeted moment.

absolute terms sustain positive long-run growth. Entry and exit introduce
life-cycle dynamics that further shape turbulence and aggregate productivity
by continuously replacing goods in the market.

The paper advances two independent streams of literature on �rm dy-
namics (Hopenhayn, 1992) and endogenous growth (Peretto, 1998; Dinopou-
los and Thompson, 1998; Young, 1998; Peretto and Connolly, 2007). I add
endogenous growth to the former, and turbulence to the latter.

In a quantitative analysis, I examine the impact of the disappearance of
highly innovative startups, as documented by Decker et al. (2016b) using
U.S. data. Although this mechanism has the potential to reduce growth and
turbulence substantially, matching the observed reduction in the skewness of
startups' growth rates does not generate quantitatively large e�ects. The cal-
ibrated model indicates that the thinning of the right tail of the distribution
of innovation ability among entrants can account for 15% of the productivity
growth slowdown that occurred in the mid-2000s, and for a similar share of
the decline in entry and job reallocation among incumbents.

This result is informative as it implies that, despite being a salient mi-
croeconomic fact, the disappearance of fast-growing startups is not quan-
titatively large enough to cause appreciable macroeconomic changes. By
contrast, mechanisms that operate through a broader decline in innovative
opportunities across �rms � such as a generalized reduction in R&D produc-
tivity � can plausibly reconcile the observed evolution of growth with that
of job reallocation and entry. A contribution of the paper is therefore to dis-
cipline, in a uni�ed framework, the quantitative importance of fast-growing
startups for aggregate outcomes and to clarify which types of mechanisms
are capable of generating sizeable macroeconomic e�ects.
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Appendix A. Stationary Model

I present the detrended version of the model, described by the following
equations.

First, de�ne ∀X, X̃t =
Xt

Zθ
t
; X̌t =

Xt

N
1

ϵ−1
t

; X̂t =
Xt

Zθ
t N

1
ϵ−1
t

.

The production function (9) is:

x̃i,t = zθi,tlxi,t
, (A.1)

where the �rst order condition for production labor is
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where yt =
Yt

Lt
and for pricing:

p̌i,t =
ϵ

ϵ− 1

ŵt

zθi,t
. (A.3)

Plugging these into detrended dividend, it be re-expressed as a function
of zi,t and lZi,t

only:

π̂i,t(zi,t, lZi,t
) = ŵt
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ŷt
nt

) 1
ϵ

z
θ ϵ−1

ϵ
i,t

]ϵ
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The stationary Bellman equation is:

V̂ (zi,t) = max
{lZi,t

}

{
π̂i,t(zi,t, lZi,t

) + (1 + gZt+1)
θ(1 + λ)

1
ϵ−1

(
nt+1

nt

) 1
ϵ−1

ĉt+1

ĉt
×

1

1 + rt+1

max{EtV̂ (zi,t+1), 0}

}
(A.5)

with the knowledge accumulation equation (12), whose stationary version is:

zi,t =
zi,t−1 + αi,tz

µ
i,t−1l

ζ
Zi,t−1

(1 + gZt )
, (A.6)
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The entry condition (18) is:

Etv̂Ei,t(αi,t+1, zi,t+1) ≥ fE, (A.7)

The equilibrium conditions are modi�ed as follows. The labor market
clearing (22) becomes:

1

nt

=

∫ Nt

0
(lxi,t

+ lZi,t
)di

Nt

+ ϕ; (A.8)

the law of motion of the number of establishment (19) is now:

nt+1

nt

=
1 +

NEt−NXt

Nt

1 + λ
; (A.9)

output (21) is:

ŷt = ĉt + fE
NEt

Nt

nt; (A.10)

Appendix B. Steady State Algorithm

Constuct a grid for the state z (relative knowledge) and the shock α
(productivity of R&D) by choosing respectively 230 and 120 grid points.
The grid points are spaced in a way to obtain higher concentration for lower
values, where non-linearities are present.

Provide an initial guess for the detrended values of wage, output, number
of �rms and for the growth rate of average knowledge. These are the variables
that �rms take as given when making their decisions. I use a bisection
method to update these guesses. Additionally, I provide an initial guess
for the distribution of �rms over the �rm-speci�c state variable and shock
(relative knowledge and productivity of R&D).

Solve the �rm's problem given by the detrended Bellman equation (A.5)
via policy function iteration for the R&D labor of �rms at each combination
of grid points of the two state variables, subject to the constraint (A.6).

Solve for the expected value of entrants by using the value function com-
puted above. As the value of entrants corresponds to the present value of next
period �rm value, the �rm's decision depends on the expectation of the draw
of αi,t+1 and zi,t+1. This expectation is approximated by a Gauss-Hermitian
quadrature with 15 nodes. If the �rm value is below 0, set production and
R&D labor to 0, as the �rm exits the market.
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At this point, I �nd the beginning of the period stationary distribution
given the guesses for the relevant aggregate variables. This is done by fol-
lowing these steps:

� Interpolate the relevant variables on a grid with 2000 points for zi,t and
300 points for αi,t.

� From the previous period distribution, set the mass of �rms at grid
points for which �rm value is negative to 0. I use the sum of the mass
of remaining �rms to compute the exit rate, before reweighting the
distribution to ensure that the weights of continuing �rms sum up to
1.

� Find the new distribution over α, given the old distribution and the
law of motion of α. At the same time, �nd the new distribution of
incumbents over zi,t. This depends on the old distribution, R&D labor
hired in the previous period at given zi,t−1 and αi,t−1, on zi,t−1, on αi,t−1.

� Find the distribution of �rms that entered in the previous period over
the state variable and shock, by drawing zi,t according to equation (16)
and αi,t according to equation (17).

� Find the entry rate as the sum of exit rate and population growth rate
(the condition required to ensure stationarity in the number of �rms,
essentially imposing steady state) from equation (A.9).

� Compute the new mass of �rms as the weighted average of the mass
of incumbents and the mass of entrants, using the entry rate as the
weight.

� Iterate until the mass of �rms in every grid point is close enough from
what it was in the previous iteration.

Finally, the guesses of the aggregate variables need to be updated (I do
so by using the bisection method). Find average production and R&D labor
using the normalized distribution and the policy functions at each grid point.
Compute the values output and number of �rms from equations (A.10) and
(A.8) respectively. Increase the wage if the left side of equation (A.7) is
larger than the right side, and increase the growth rate of average knowledge
if the distribution of �rms over z is such that the average relative knowledge

43



is larger than 1. Iterate until the values of consumption, number of �rms,
growth rate of average knowledge, wage, mass of �rms over the state and
shock and entry rate di�er from the values obtained in the previous iteration
by less than arbitrary tolerance levels.

Appendix C. Proof of Proposition 2

With these two assumptions, (31) simpli�es considerably. First, the ex-
pectation operator becomes unnecessary as the problem is now one of perfect
foresight. Then the last term in the square bracket drops out. As it is easier
to work with stationarized variables, speci�cally, I de�ne for any variable

Xt, X̂t = Xt/Z
θ
tN

1
ϵ−1

t (Appendix A provides all relevant equations with only
stationary variables). Iterating forward that equation then leads to:

lZi,t
=

[
Bt+1αi,tz

µ
i,tζ

ŵt

∂π̂i,t+1

∂zi,t+1

] 1
1−ζ

(C.1)

where

Bt+1 =
(1 + gZt+1)

θ−1(1 + λ)
1

ϵ−1

(
nt+1

nt

) 1
ϵ−1

1 + rt+1

. (C.2)

Because equation (C.1) depends simultaneously on zt and zt+1, I iterate
the zt+1 term backwards to write the equation only as a function of the
current level of technological knowledge. At this point, the expression for
lZi,t

can be substituted into the expression for the �rm's productivity growth
rate, given in equation (30), and then take the derivative with respect to zi,t.
As I will show, that derivative is negative when the two requirements pointed
out in Proposition 2 are satis�ed.

Optimal knowledge growth is:

gZi,t+1 = G0z
µ

1−ζ
−1

i,t z
[θ(ϵ−1)−1] ζ

1−ζ

i,t+1 (C.3)

with G0 being a positive constant equal to:

G0 = α
1+ ζ

1−ζ

i,t

[
Bt+1ζ

(
ϵ− 1

ϵ

)ϵ

ŵ1−ϵ
t+1

ŷt+1

nt+1

] ζ
1−ζ

. (C.4)

Iterating zi,t+1 backwards, it can be rewritten as

gZi,t+1 = G0z
µ

1−ζ
−1+[θ(ϵ−1)−1] ζ

1−ζ

i,t

(
1 + gZi,t+1

)[θ(ϵ−1)−1] ζ
1−ζ , (C.5)
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The term 1 + gZi,t appears because of the dependence of optimal R&D on
relative knowledge both at time t and at time t + 1. In a continuous time
version of this model, t ≈ t + 1, thus eliminating that term. In that case,
the �rst requirement for stationarity in Proposition 2 would be the only one
needed. Instead, because time is discrete, implicit di�erentiation is needed
to �nd the derivative. The result is:

∂gZi,t+1

∂zi,t
=

G0z
(.)−1
i,t

(
1 + gZi,t+1

)(.)
[ζθ (ϵ− 1)− 1 + µ]

1−G [θ (ϵ− 1)− 1]
, (C.6)

where G is the positive constant

G = G0
ζ

1− ζ
z
(.)
i,t

(
1 + gZi,t+1

)(.)−1
(C.7)

Next, I prove condition (ii). Since knowledge growth is strictly decreasing,
and growth of average knowledge is strictly positive and �nite, a su�cient
condition for this proof is that knowledge growth tends to in�nity when
relative knowledge tends to zero, and it tends to zero when relative knowledge
tends to in�nity. I proceed by proving each part in sequence.

Because R&D investment is a function of future relative knowledge, I
need to connect current relative knowledge with future relative knowledge.
A �rst useful result is the following:

lim
zi,t→∞

zi,t+1 =
zi,t + αi,tz

µ
i,tl

ζ
Zi,t

1 + gZt+1

= ∞, (C.8)

for any value of lZi,t
, given its non-negativity constraint. At this stage, we

can �nd the limit of gZi,t+1 when both zi,t and zi,t+1 tend to in�nity. From
equation (C.3), it is immediate to see that the growth rate of knowledge
equals 0 when the sum of the two exponents is negative. The sum of the two
exponents is the �rst requirement for stationarity in Proposition 2.

For the second part of condition (ii), we need to prove that knowledge
growth tends to in�nity when the relative knowledge level tends to 0. When-
ever R&D investment is positive, it is clear that knowledge growth tends
to in�nity because it is an increasing function of R&D investment and rela-
tive knowledge is the only element that features at the denominator because
µ < 1 by assumption. Instead, suppose that the R&D investment is 0. In
this case, the logic follows the one used to prove the �rst part of condition
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(ii). That is, if zi,t tends to 0, so does zi,t+1. Hence whenever the parame-
ters satisfy the requirement for stationarity, from equation (C.3) we see that
growth must tend to in�nity.
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